

ASX RELEASE

29th April 2019

MONGAE REVEALS NEW TARGET OF SIGNIFICANTLY HIGHER GRADE AND LARGER SIZE

Highlights

- Extensions to the Mongae Creek soil grid have identified a new copper anomaly which is of much higher grade tenor than the previous one, is larger in surface expression, and is still open.
- Copper-in-soil values include 12 samples higher than 0.2% Cu, with a spectacular high of 0.7% Cu¹.
- The anomaly is in excess of 500 m wide and 500 m long (4.5 times larger than previous anomaly).
- Anomaly still open to the NW.
- Trenching has commenced at Mongae Creek, and will include this new target area.
- Follow-up drilling planned for the second half of 2019.

Tony Teng, Managing Director, commented: "We are very excited about these new exploration results from Mongae Creek. The intensity and the size of the anomaly is highly encouraging, and we are working as fast as we can to complete our geological mapping and sampling programs so we can finalise targets and commence drilling in the second half of 2019. The fact that the anomaly is still open to the NW further highlights the potential of the NW–SE trending structural corridor identified by the exploration team and emphasis the fact that GMN holds highly prospective ground.

¹ Assays provided with a portable XRF instrument on dried, deagglomerated and well-mixed fine-grained soil material. Full quality assurance protocols and quality control were applied, in line with industry best practice. Full details on technical specifics included in Table 1 at the end of this announcement. Even though laboratory analyses have demonstrated excellent correlation between laboratory and XRF analyser, GMN notes that the accuracy and precision of portable XRF instrument is of lower quality than that of laboratory analysis.

Gold Mountain Limited, (ASX: GMN) is pleased to announce an exploration update for its Wabag Project in PNG.

Mongae Creek

A step-out soil auger programme was completed at Mongae Creek on the 14th of April 2019, with an additional 149 soils samples collected from the prospect. The aim of the programme was to extend the soil grid to the NW, to close anomalous Cu-in-soil anomalism identified by the February 2019 infill-soil programme². The soil sampling reported here extended the existing grid a further 400 m to the NW along strike from the initial anomaly.

A total of 149 samples were collected from a depth of between 1 to 2 m using a handheld auger (results reported in Appendix 2). The samples (weighing approximately 3 kg each), were then transported back to Crown Ridge for drying and sieving down to -80# fraction, the samples were then analysed using an Olympus Vanta pXRF instrument.

The soil programme identified a very significant Cu-in-soil anomaly located approximately 1,200 m northwest of drill hole MCD002. The Cu-in-soil anomaly is over 500 m wide and 500 m long, with a spot high of 0.71% Cu with five adjacent soil samples assaying greater than 0.25% Cu, (Figure 1). A Mo anomaly is coincident with the Cu-in-soil anomaly, giving further confidence that a potential porphyry deposit is present at Mongae Creek. In the extension grid, over 30% of the soil samples returned Cu values greater than 0.1%.

The Cu anomaly is still open to the north-west and it is planned to expand the soil grid another 500 m in that direction to close off, or further extend the Mongae Creek anomaly. Approximately 600 m of trenching has commenced at Mongae Creek, with this work commencing on the 21st April. The aim of the trenching programme is to expose the ground where the high Cu-in-soil anomalies have been defined to obtain geological, structural and geochemical data from these areas to assist with drill hole targeting. It is planned to complete this work by mid-May with the aim of drilling the Mongae Creek prospect in the second half of 2019. Drilling will likely be concentrated on this newly discovered high-grade copper in soil anomaly which is 4.5 times larger than the area tested by MCD002³ which intersected wide zones of sub-economic Cu mineralisation.

Doug Smith, Director Exploration, commented: "The identification of this new, large high-tenor copper anomaly at the north-west end of the Mongae Creek Prospect has me very excited. The central part of the Mongae Creek anomaly was partially tested with our second drill hole (MCD002) which intersected wide zones of sub-economic mineralisation. The presence of this zone of higher copper contents suggests that we did not drill-test the core of the system and the best is yet to come. The trenching we are now undertaking at Mongae Creek to further define these anomalies on the ground will allow us to better define the copper anomaly and assist with drill-hole planning so we can maximise our chance of success.

² First reported in ASX Announcement of 21st March 2019: 'Key Prospects continue to show excellent exploration results, on track for drilling later in 2019, Competent Person: Mr Douglas Smith.

³ First reported in ASX Announcement of 30th November 2018: 'Significant Copper Drill Intercept MCD002 Mongae Creek' Competent Person: Mr Douglas Smith.

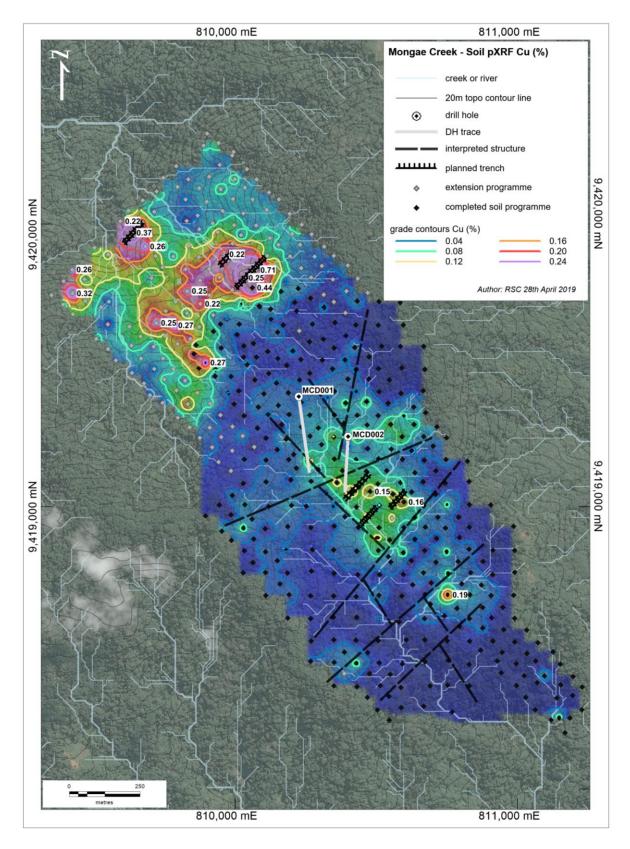


Figure 1: Mongae Creek Cu-in-soil geochemistry results (pXRF results).

Planned Exploration – Mongae Creek

In the next three months GMN is planning to complete the trenching programme at Mongae Creek. The trenches will be mapped and sampled. Results from the trenching programme will be used to assist with drill hole targeting. It is expected to finalise drill targets by late May with the aim of drilling in H2 2019, after the completion local consultation programs and drill site clearing.

Figure 3: Trenching Activities currently underway at Mongae Creek

Competent Person's Statement

The information in this report that relates to Exploration Results is based on information compiled by Doug Smith, a Competent Person who is a member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Smith is a consultant geologist who is employed in a full-time capacity by Gold Mountain. Mr Smith has sufficient relevant experience that is relevant to the style of mineralisation and type of deposit under consideration and the activity being undertaken to qualify as a Competent Person as defined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (2012). Doug Smith consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

--END---

For further information please visit the website www.goldmountainltd.com.au or contact:

Doug Smith Director Exploration 0419 414 460

Tony Teng Managing Director 0414 300 044

Jinked in

Follow Gold Mountain on Twitter:

Linked in Follow Gold Mountain on LinkedIn:

YouTube Follow Gold Mountain on YouTube:

www.twitter.com/GoldMountainASX www.linkedin.com/company/goldmountain YouTube Channel

About Gold Mountain

Gold Mountain holds substantial areas within the fertile Au-Cu-endowed Papuan Mobile Belt that includes world-class mines (Figure 2). Most of the areas within the Exploration Licences (ELs) have never been explored using modern technology. Multiple targets have been identified within the licence area of approximately 2,000 km² (Figure 3). Current exploration focus is on four main prospects:

- Mongae Creek discovery of outcropping porphyry Cu-Au style mineralisation, mapping and stream sampling indicate that there is good potential for a large-tonnage deposit in this area. Initial drilling identified the existence of porphyry-style mineralisation. Results from the drilling and surface geochemical sampling programmes, now underway, will allow the company to better target future drilling.
- Sak Creek mapping at Sak Creek has identified an alteration halo which has the characteristics of a porphyry system, and follow-up field activities are being planned to further confirm this.
- **K-Lam** early-stage exploration identified strongly mineralised rock chip samples from rocks that are consistent with the intrusives that were drilled in diamond drill holes at Mongae Creek.
- **Crown Ridge** field programmes have identified part of the catchment area where the source of abundant fine and coarse gold is likely to occur; current exploration working-up to hard-rock drilling targets, expected to be of high-grade epithermal nature.

Large areas remain to be assessed. A video is now available on the Company's <u>website</u> and via social media sites (<u>here</u>). The video includes interviews with the senior leadership team describing what makes Wabag a unique Cu-Au asset.



Figure 2: Location of the Wabag Project relative to major world class gold mines in Papua New Guinea

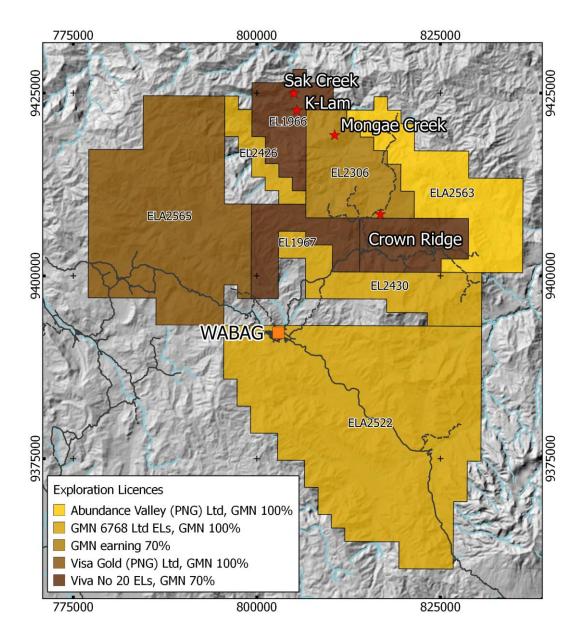


Figure 3: GMN exploration licences cover substantial areas within the fertile, Au-Cu-endowed Papuan Mobile Belt that includes world-class mines.

Appendix 1 JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The soil samples were collected along an 80 m by 80 m grid. A shell auger was used to collect the samples. Each sample was taken from the B horizon and the sample was taken from a depth of between 0.5 m to 3 m. A 3 kg sample was collected. This sample was then dried and sieved down to a -80# fraction. Approximately 100 to 150 grams were then sent off for laboratory analysis. The sample density and sample preparation of the soil samples was deemed appropriate by the competent person. Soil chemical data were collected using an Olympus Vanta VCR pXRF instrument, operating in <i>geochem</i> mode, the samples were dried and sieved to -80# fraction. They were presented to the instrument in sample cups covered by 4 µm Prolene. These data were collected in accordance with industry best-practice and the instrument was calibrated using OREAS25a, OREAS24b, OREAS600, NIST2711a, OREAS920, OREAS600 and OREAS151b. Based on repeat analyses of samples, the limit of quantification for Cu is ~11 ppm. SOPs for all work were used to safeguard representivity of the sampling and drilling, which was carried out using best and standard practice. Rock chip samples – Approximately 3 – 4 kg of sample collected on basis of visible veining and/or mineralisation (sulphides/Fe oxides). Outcrops sampled on basis of structures, veining or mineralisation.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether	 Not relevant – no new drilling results reported.

	core is oriented and if so, by what method, etc).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Not relevant – no new drilling results reported.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged Rock samples were photographed and geologically logged. No core sampling is referred to in this release. No core sampling is referred to in this release.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of Industry-standard analytical methods undertaken by ALS, Townsville, Queensland. Gold assays – 50 g fire assays (method Au-AA24). Multi-element – 0.25 g sub-sample digested in 4-acid digest followed by ICP-MS determination (method ME-MS61). QC by laboratory included check assays, duplicate sub-sampling, blanks and standards. In the opinion of the competent person the QC results show acceptable accuracy and precision.

(ABN: 79 115 845 9

ASX: GI

accuracy (ie lack of bias) and precision have been established. Verification of ٠ The verification of significant No diamond drilling was undertaken – Not intersections by either independent or relevant. sampling and assaying alternative company personnel. The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. WGS84, Zone 54S.The rock chip sample sites Location of data points Accuracy and quality of surveys used to locate drill holes (collar and down-hole were located using a hand-held Garmin GPSMap surveys), trenches, mine workings and 64ST GPS Unit. This is considered appropriate for other locations used in Mineral this stage of exploration by the competent Resource estimation. person. Specification of the grid system used. Grid system used was WGS84, Zone 54S. Quality and adequacy of topographic Good topographic control is available. control. Data spacing and Data spacing for reporting Data spacing is sufficient for reconnaissance • of ٠ Exploration Results. stage exploration sampling programs. distribution Whether the data spacing and Data spacing / density for the soil sampling is distribution is sufficient to establish the considered appropriate by the competent degree of geological and grade person to produce the Cu in soil anomaly map as continuity appropriate for the Mineral presented in this announcement. Resource and Ore Reserve estimation There has been no sample compositing. procedure(s) and classifications applied. Whether sample compositing has been applied. Orientation of data in Whether the orientation of sampling The orientation of samples is not likely to bias achieves unbiased sampling of possible the assay results and is not relevant given the relation to geological structures and the extent to which this early stages of exploration. structure is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. Sample security The measures taken to ensure sample Samples packed into polyweave sacks, sealed by cable ties and transported to TNT in Mt Hagan by security. senior personnel. TNT transported samples to ALS in Australia via air freight. Audits or reviews The results of any audits or reviews of No audits or reviews undertaken. ٠ ٠ sampling techniques and data.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Sampling undertaken on Exploration Licence 1968, EL1966 and EL in Enga Province, PNG. EL1968 and 1966 is held by Viva No.20 Limited, a PNG-incorporated company. Gold Mountain Limited has signed a Heads of Agreement with Viva. EL1968 and EL 1966 are currently under renewal application. EL2306 was granted to Khor Eng Hock & Sons (PNG) Limited (KEH) on 14 December 2015. Gold Mountain Limited (ASX:GMN) is the manager of the exploration programs under an agreement with KEH. There are no impediments to conduct exploration programs on the tenements.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 All exploration programs conducted by Gold Mountain Limited.
Geology	• Deposit type, geological setting and style of mineralisation.	 EL2306 and EL1966 contain potential for potential for porphyry copper-gold deposits, intrusive- related gold and epithermal gold deposits, structurally-controlled gold lode deposits and alluvial gold-platinum deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results. easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• Not relevant, no drilling was undertaken.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade 	No metal equivalents used.

(Criteria listed in the preceding section also apply to this section.)

(ABN:	79	115	845	942

	 results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The true widths of intersections are not known; however, at this stage, veining is expected to be steep.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps showing prospect location, drill hole locations, grid soil samples, sections, and outcrop photos are included in the attached report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All exploration results are reported in a balanced manner. All results are supported by clear and extensive diagrams and descriptions. No assays or other relevant information to interpret the results are omitted.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All exploration results detailed in attached report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive 	 Soil sampling and trenching at Mongae Creek. Field mapping and more sampling at K-Lam.

Sample ID	Prospect	Туре	Easting*	Northing*	RL	Cu (%) pXRF	Zn (%) pXRF	Mo (%) pXRF	Pb (%) pXRF
151751	Mongae Ck	Soil sample	809,753	9,419,604	1660	0.11259	0.01164	0.00193	<lod< td=""></lod<>
151752	Mongae Ck	Soil sample	809,721	9,419,650	1622	0.25129	0.01222	0.00075	0.00063
151753	Mongae Ck	Soil sample	809,704	9,419,809	1576	0.08468	0.01115	0.00346	0.00164
151754	Mongae Ck	Soil sample	809,790	9,419,725	1613	0.11621	0.00684	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151755	Mongae Ck	Soil sample	809,830	9,419,685	1619	0.08258	0.00588	0.00399	0.00227
151756	Mongae Ck	Soil sample	809,873	9,419,636	1664	0.13045	0.00877	0.00339	0.00144
151757	Mongae Ck	Soil sample	809,990	9,419,767	1682	0.16149	0.01290	0.00143	<lod< td=""></lod<>
151758	Mongae Ck	Soil sample	809,945	9,419,812	1651	0.14723	0.00720	0.00351	0.00088
151759	Mongae Ck	Soil sample	809,908	9,419,841	1638	0.19859	0.00799	0.00126	<lod< td=""></lod<>
151760	Mongae Ck	Soil sample	809,872	9,419,883	1609	0.13395	0.01235	0.00059	<lod< td=""></lod<>
151761	Mongae Ck	Soil sample	809,836	9,419,923	1586	0.12333	0.00952	0.00132	<lod< td=""></lod<>
151763	Mongae Ck	Soil sample	809,829	9,420,011	1578	0.02210	0.00931	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151764	Mongae Ck	Soil sample	809,873	9,419,982	1583	0.04168	0.00689	<lod< td=""><td>0.00059</td></lod<>	0.00059
151765	Mongae Ck	Soil sample	809,963	9,419,893	1623	0.22110	0.00828	0.02114	0.00065
151766	Mongae Ck	Soil sample	810,032	9,419,810	1687	0.25125	0.00566	0.00639	0.00060
151767	Mongae Ck	Soil sample	810,556	9,418,959	1715	0.12644	0.01128	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151768	Mongae Ck	Soil sample	810,227	9,419,622	1795	0.01697	0.01856	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151863	Mongae Ck	Soil sample	809,985	9,419,127	1875	0.02723	0.00972	<lod< td=""><td>0.00071</td></lod<>	0.00071
151864	Mongae Ck	Soil sample	809,942	9,419,158	1861	0.03337	0.01907	<lod< td=""><td>0.00948</td></lod<>	0.00948
151865	Mongae Ck	Soil sample	809,919	9,419,210	1833	0.04109	0.01040	<lod< td=""><td>0.00131</td></lod<>	0.00131
151866	Mongae Ck	Soil sample	809,875	9,419,244	1805	0.03737	0.01056	<lod< td=""><td>0.00101</td></lod<>	0.00101
151867	Mongae Ck	Soil sample	809,839	9,419,281	1771	0.11348	0.02273	0.00257	0.00296
151868	Mongae Ck	Soil sample	809,797	9,419,315	1737	0.05651	0.03766	<lod< td=""><td>0.00057</td></lod<>	0.00057
151869	Mongae Ck	Soil sample	809,743	9,419,368	1697	0.02147	0.02127	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151870	Mongae Ck	Soil sample	809,699	9,419,394	1676	0.03735	0.02720	0.00075	0.00490
151871	Mongae Ck	Soil sample	809,678	9,419,436	1676	0.03211	0.00618	<lod< td=""><td>0.00075</td></lod<>	0.00075
151872	Mongae Ck	Soil sample	809,635	9,419,473	1686	0.03561	0.00791	<lod< td=""><td>0.00058</td></lod<>	0.00058
151873	Mongae Ck	Soil sample	809,578	9,419,518	1683	0.04217	0.00964	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151874	Mongae Ck	Soil sample	809,551	9,419,558	1677	0.07170	0.01442	<lod< td=""><td>0.00078</td></lod<>	0.00078
151875	Mongae Ck	Soil sample	809,509	9,419,594	1664	0.08854	0.01477	<lod< td=""><td>0.00172</td></lod<>	0.00172
151876	Mongae Ck	Soil sample	809,426	9,419,681	1662	0.11177	0.00813	0.00402	0.00165
151877	Mongae Ck	Soil sample	809,391	9,419,715	1658	0.06000	0.00486	0.00505	0.00157
151878	Mongae Ck	Soil sample	809,350	9,419,748	1614	0.12688	0.00553	0.01052	0.00132
151879	Mongae Ck	Soil sample	810,469	9,419,757	1900	0.03261	0.00953	0.00059	0.00123
151880	Mongae Ck	Soil sample	810,434	9,419,807	1890	0.02392	0.01363	<lod< td=""><td>0.00061</td></lod<>	0.00061
151881	Mongae Ck	Soil sample	810,399	9,419,854	1860	0.06889	0.01475	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151882	Mongae Ck	Soil sample	810,350	9,419,888	1849	0.03868	0.00980	<lod< td=""><td>0.00069</td></lod<>	0.00069
151883	Mongae Ck	Soil sample	810,315	9,419,920	1851	0.05154	0.03506	<lod< td=""><td>0.00053</td></lod<>	0.00053
151884	Mongae Ck	Soil sample	810,271	9,419,964	1821	0.03750	0.01107	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151885	Mongae Ck	Soil sample	810,236	9,419,998	1793	0.14758	0.01396	0.00106	<lod< td=""></lod<>

Appendix 2: Complete list of relevant pXRF results for soil samples collected in April 2019.

GOLD MOUNTAIN LIMITED ASX: GMN

(ABN: 79 115 845 942)

1	1	I		1			1		
151886	Mongae Ck	Soil sample	810,193	9,420,037	1768	0.06135	0.01113	0.00139	0.00061
151887	Mongae Ck	Soil sample	810,155	9,420,087	1766	0.05251	0.00837	<lod< td=""><td>0.00192</td></lod<>	0.00192
151888	Mongae Ck	Soil sample	810,120	9,420,112	1740	0.04623	0.01247	<lod< td=""><td>0.00091</td></lod<>	0.00091
151889	Mongae Ck	Soil sample	810,076	9,420,158	1713	0.06433	0.01284	<lod< td=""><td>0.00044</td></lod<>	0.00044
151890	Mongae Ck	Soil sample	810,042	9,420,194	1667	0.05009	0.01341	<lod< td=""><td>0.00084</td></lod<>	0.00084
151891	Mongae Ck	Soil sample	809,995	9,420,255	1645	0.05256	0.01867	<lod< td=""><td>0.00066</td></lod<>	0.00066
151892	Mongae Ck	Soil sample	809,942	9,420,286	1622	0.10313	0.01394	0.00117	0.00916
151893	Mongae Ck	Soil sample	809,901	9,420,321	1593	0.05868	0.01429	<lod< td=""><td>0.00134</td></lod<>	0.00134
151894	Mongae Ck	Soil sample	810,390	9,419,686	1861	0.02654	0.02096	<lod< td=""><td>0.00086</td></lod<>	0.00086
151895	Mongae Ck	Soil sample	810,350	9,419,725	1843	0.02102	0.00681	<lod< td=""><td>0.00071</td></lod<>	0.00071
151896	Mongae Ck	Soil sample	810,314	9,419,750	1816	0.02716	0.01670	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151897	Mongae Ck	Soil sample	810,269	9,419,811	1795	0.05252	0.01145	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151898	Mongae Ck	Soil sample	810,234	9,419,844	1761	0.05396	0.01604	0.00074	<lod< td=""></lod<>
151899	Mongae Ck	Soil sample	810,195	9,419,886	1754	0.05273	0.01438	0.00113	0.00089
151900	Mongae Ck	Soil sample	810,153	9,419,927	1747	0.06300	0.01577	0.00261	0.00067
151901	Mongae Ck	Soil sample	809,990	9,419,198	1553	0.03450	0.02778	<lod< td=""><td>0.01339</td></lod<>	0.01339
151902	Mongae Ck	Soil sample	809,951	9,419,246	1841	0.03549	0.01438	<lod< td=""><td>0.00160</td></lod<>	0.00160
151903	Mongae Ck	Soil sample	809,832	9,419,363	1747	0.15879	0.01172	0.00485	0.00195
151904	Mongae Ck	Soil sample	809,793	9,419,412	1736	0.12050	0.01712	0.00099	0.00088
151905	Mongae Ck	Soil sample	809,750	9,419,450	1712	0.08799	0.02060	<lod< td=""><td>0.00046</td></lod<>	0.00046
151906	Mongae Ck	Soil sample	809,714	9,419,487	1699	0.02820	0.01235	<lod< td=""><td>0.00074</td></lod<>	0.00074
151907	Mongae Ck	Soil sample	809,667	9,419,524	1680	0.07987	0.01627	0.00105	0.00113
151908	Mongae Ck	Soil sample	809,633	9,419,570	1652	0.08476	0.02141	<lod< td=""><td>0.00540</td></lod<>	0.00540
151909	Mongae Ck	Soil sample	809,550	9,419,645	1624	0.01367	0.00694	<lod< td=""><td>0.00101</td></lod<>	0.00101
151910	Mongae Ck	Soil sample	809,526	9,419,706	1605	0.07077	0.01254	0.00095	0.00208
151911	Mongae Ck	Soil sample	809,470	9,419,728	1633	0.12984	0.07660	<lod< td=""><td>0.00097</td></lod<>	0.00097
151912	Mongae Ck	Soil sample	809,424	9,419,755	1623	0.32458	0.01477	0.00368	0.00175
151913	Mongae Ck	Soil sample	809,393	9,419,798	1590	0.15986	0.01846	<lod< td=""><td>0.00113</td></lod<>	0.00113
151914	Mongae Ck	Soil sample	810,068	9,419,211	1871	0.01818	0.00467	<lod< td=""><td>0.00128</td></lod<>	0.00128
151915	Mongae Ck	Soil sample	810,027	9,419,250	1855	0.04812	0.01126	<lod< td=""><td>0.00190</td></lod<>	0.00190
151916	Mongae Ck	Soil sample	809,991	9,419,283	1844	0.03655	0.01130	<lod< td=""><td>0.00353</td></lod<>	0.00353
151917	Mongae Ck	Soil sample	809,910	9,419,280	1799	0.04295	0.01225	<lod< td=""><td>0.00077</td></lod<>	0.00077
151918	Mongae Ck	Soil sample	809,948	9,419,324	1788	0.02221	0.01035	<lod< td=""><td>0.00140</td></lod<>	0.00140
151919	Mongae Ck	Soil sample	809,912	9,419,365	1791	0.08610	0.00787	0.00179	0.00112
151920	Mongae Ck	Soil sample	809,867	9,419,403	1747	0.12026	0.01129	0.00273	0.00178
151921	Mongae Ck	Soil sample	809,823	9,419,446	1736	0.04841	0.00965	0.00139	0.00142
151922	Mongae Ck	Soil sample	809,781	9,419,487	1714	0.07761	0.01020	<lod< td=""><td>0.00111</td></lod<>	0.00111
151923	Mongae Ck	Soil sample	809,745	9,419,524	1681	0.06926	0.00624	<lod< td=""><td>0.00052</td></lod<>	0.00052
151924	Mongae Ck	Soil sample	809,712	9,419,566	1649	0.03817	0.00676	<lod< td=""><td>0.00091</td></lod<>	0.00091
151925	Mongae Ck	Soil sample	809,665	9,419,602	1646	0.11840	0.00911	0.00262	0.00293
151926	Mongae Ck	Soil sample	809,627	9,419,637	1623	0.10195	0.01523	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151927	Mongae Ck	Soil sample	809,553	9,419,726	1595	0.02960	0.01681	<lod< td=""><td>0.00064</td></lod<>	0.00064
151928	Mongae Ck	Soil sample	809,467	9,419,804	1586	0.09118	0.01047	<lod< td=""><td>0.00058</td></lod<>	0.00058

GOLD MOUNTAIN LIMITED ASX: GMN

(ABN: 79 115 845 942)

151929	Mongae Ck	Soil sample	809,423	9,419,839	1549	0.25682	0.03197	<lod< td=""><td>0.00157</td></lod<>	0.00157
151930	Mongae Ck	Soil sample	810,394	9,419,763	1862	0.04400	0.01683	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151931	Mongae Ck	Soil sample	810,346	9,419,804	1807	0.02828	0.01748	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151932	Mongae Ck	Soil sample	810,307	9,419,852	1842	0.04085	0.02073	<lod< td=""><td>0.00056</td></lod<>	0.00056
151933	Mongae Ck	Soil sample	810,281	9,419,885	1800	0.03792	0.02205	<lod< td=""><td>0.00057</td></lod<>	0.00057
151934	Mongae Ck	Soil sample	810,230	9,419,927	1778	0.06029	0.01709	<lod< td=""><td>0.00070</td></lod<>	0.00070
151935	Mongae Ck	Soil sample	810,203	9,419,966	1759	0.07713	0.01476	<lod< td=""><td>0.00051</td></lod<>	0.00051
151936	Mongae Ck	Soil sample	810,112	9,420,050	1729	0.07951	0.03116	0.00129	0.00085
151937	Mongae Ck	Soil sample	810,062	9,420,087	1717	0.07472	0.02737	<lod< td=""><td>0.00108</td></lod<>	0.00108
151938	Mongae Ck	Soil sample	810,035	9,420,129	1666	0.07037	0.01668	<lod< td=""><td>0.00117</td></lod<>	0.00117
151939	Mongae Ck	Soil sample	809,999	9,420,159	1631	0.08911	0.01641	0.00060	0.00121
151940	Mongae Ck	Soil sample	809,945	9,420,210	1644	0.04411	0.01605	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151941	Mongae Ck	Soil sample	809,888	9,420,278	1580	0.08588	0.01115	0.00171	<lod< td=""></lod<>
151942	Mongae Ck	Soil sample	809,792	9,420,205	1531	0.05303	0.10205	<lod< td=""><td>0.00047</td></lod<>	0.00047
151943	Mongae Ck	Soil sample	809,746	9,420,164	1506	0.04695	0.02874	0.00081	<lod< td=""></lod<>
151944	Mongae Ck	Soil sample	809,722	9,420,116	1481	0.11184	0.01081	0.00111	0.00080
151945	Mongae Ck	Soil sample	809,673	9,420,084	1447	0.07660	0.01080	0.00095	0.00059
151946	Mongae Ck	Soil sample	809,623	9,420,047	1477	0.07715	0.01370	<lod< td=""><td>0.00050</td></lod<>	0.00050
151947	Mongae Ck	Soil sample	809,594	9,420,010	1427	0.21526	0.01054	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151948	Mongae Ck	Soil sample	809,502	9,419,916	1463	0.10535	0.08261	0.00251	0.00145
151949	Mongae Ck	Soil sample	809,842	9,419,594	1676	0.18515	0.00780	0.00896	0.00057
151950	Mongae Ck	Soil sample	809,796	9,419,576	1674	0.14322	0.00656	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151951	Mongae Ck	Soil sample	810,123	9,419,951	1706	0.09051	0.02073	0.00160	0.00091
151952	Mongae Ck	Soil sample	810,074	9,419,995	1703	0.05463	0.00679	<lod< td=""><td>0.00097</td></lod<>	0.00097
151953	Mongae Ck	Soil sample	810,029	9,420,038	1683	0.06244	0.00767	0.00339	0.00135
151954	Mongae Ck	Soil sample	809,993	9,420,089	1656	0.07482	0.00930	0.00071	0.00086
151955	Mongae Ck	Soil sample	809,949	9,420,123	1628	0.09012	0.00838	0.00271	0.00094
151956	Mongae Ck	Soil sample	809,908	9,420,168	1613	0.06485	0.01012	<lod< td=""><td>0.00049</td></lod<>	0.00049
151957	Mongae Ck	Soil sample	809,990	9,420,243	1636	0.05509	0.01781	<lod< td=""><td>0.00075</td></lod<>	0.00075
151958	Mongae Ck	Soil sample	809,834	9,420,158	1562	0.04124	0.01197	<lod< td=""><td>0.00047</td></lod<>	0.00047
151959	Mongae Ck	Soil sample	809,796	9,420,132	1538	0.06682	0.01758	<lod< td=""><td>0.00060</td></lod<>	0.00060
151960	Mongae Ck	Soil sample	809,714	9,420,044	1512	0.04604	0.00735	0.00056	0.00369
151961	Mongae Ck	Soil sample	809,673	9,420,006	1514	0.17221	0.00763	0.00784	0.00086
151962	Mongae Ck	Soil sample	809,635	9,419,969	1510	0.37350	0.01175	0.00073	0.00051
151963	Mongae Ck	Soil sample	809,551	9,419,893	1483	0.11314	0.00635	<lod< td=""><td>0.00059</td></lod<>	0.00059
151964	Mongae Ck	Soil sample	809,755	9,419,692	1637	0.14700	0.01729	0.00223	0.01395
151965	Mongae Ck	Soil sample	809,782	9,419,642	1651	0.27334	0.01126	<lod< td=""><td>0.00086</td></lod<>	0.00086
151966	Mongae Ck	Soil sample	809,923	9,419,678	1693	0.05030	0.00803	<lod< td=""><td>0.00082</td></lod<>	0.00082
151967	Mongae Ck	Soil sample	809,877	9,419,718	1665	0.22304	0.01093	<lod< td=""><td>0.00054</td></lod<>	0.00054
151968	Mongae Ck	Soil sample	809,831	9,419,763	1643	0.24988	0.00717	<lod< td=""><td>0.00069</td></lod<>	0.00069
151969	Mongae Ck	Soil sample	809,802	9,419,797	1611	0.11212	0.00755	0.00136	<lod< td=""></lod<>
151970	Mongae Ck	Soil sample	809,743	9,419,847	1589	0.12034	0.00984	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151971	Mongae Ck	Soil sample	809,719	9,419,887	1575	0.13410	0.00822	0.00171	0.00063

GOLD MOUNTAIN LIMITED ASX: GMN

(ABN: 79 115 845 942)

151972	Mongae Ck	Soil sample	809,683	9,419,921	1546	0.26366	0.00830	0.00613	0.00093
151973	Mongae Ck	Soil sample	809,703	9,419,959	1544	0.15218	0.00936	0.00218	0.00087
151974	Mongae Ck	Soil sample	809,740	9,419,923	1599	0.04094	0.00677	0.00105	0.00085
151975	Mongae Ck	Soil sample	809,781	9,419,885	1622	0.05955	0.00918	<lod< td=""><td>0.00082</td></lod<>	0.00082
151976	Mongae Ck	Soil sample	809,825	9,419,840	1629	0.18426	0.00806	<lod< td=""><td>0.00054</td></lod<>	0.00054
151977	Mongae Ck	Soil sample	809,876	9,419,801	1642	0.18069	0.00709	0.00111	<lod< td=""></lod<>
151978	Mongae Ck	Soil sample	809,909	9,419,748	1655	0.16519	0.01318	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151979	Mongae Ck	Soil sample	809,940	9,419,718	1680	0.10290	0.01061	<lod< td=""><td>0.00075</td></lod<>	0.00075
151980	Mongae Ck	Soil sample	810,113	9,419,888	1722	0.08148	0.01199	<lod< td=""><td>0.00042</td></lod<>	0.00042
151981	Mongae Ck	Soil sample	810,021	9,419,961	1672	0.03731	0.00989	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151982	Mongae Ck	Soil sample	809,997	9,419,996	1647	0.11107	0.01394	0.00174	0.00094
151983	Mongae Ck	Soil sample	809,956	9,420,046	1628	0.05793	0.00696	<lod< td=""><td>0.00067</td></lod<>	0.00067
151984	Mongae Ck	Soil sample	809,900	9,420,080	1598	0.07779	0.01138	<lod< td=""><td>0.00050</td></lod<>	0.00050
151985	Mongae Ck	Soil sample	809,873	9,420,127	1572	0.07093	0.01371	<lod< td=""><td>0.00308</td></lod<>	0.00308
151986	Mongae Ck	Soil sample	809,825	9,420,087	1547	0.03261	0.01517	<lod< td=""><td>0.00046</td></lod<>	0.00046
151987	Mongae Ck	Soil sample	809,868	9,420,030	1574	0.03211	0.01332	<lod< td=""><td>0.00074</td></lod<>	0.00074
151988	Mongae Ck	Soil sample	809,921	9,420,003	1598	0.06680	0.00769	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
151989	Mongae Ck	Soil sample	809,939	9,419,971	1619	0.14037	0.00824	0.00471	0.00048
151990	Mongae Ck	Soil sample	809,991	9,419,932	1638	0.16946	0.00822	<lod< td=""><td>0.00076</td></lod<>	0.00076
151991	Mongae Ck	Soil sample	810,016	9,419,898	1664	0.18910	0.00658	0.00150	<lod< td=""></lod<>
151992	Mongae Ck	Soil sample	810,073	9,419,837	1702	0.70638	0.00796	0.00239	0.00056
151993	Mongae Ck	Soil sample	810,387	9,418,409	1702	0.05769	0.00675	<lod< td=""><td>0.00060</td></lod<>	0.00060

*coordinates in UTM (WGS 84) Zone 54S projection