ASSAY RESULTS RECEIVED FOR MAIDEN DRILL HOLE AT MONGAI CREEK, ENGA PROVINCE, PNG

HIGHLIGHTS:

\checkmark Assay results for first drill hole MCD001 at Mongai Creek return encouraging results, with best results of 1 m @ $243 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.8 \% \mathrm{Cu}, 522$ ppm Co, $0.4 \% \mathrm{Ni}$, and $0.7 \% \mathrm{~W}$ at 38 m depth
\checkmark Increasing gradient ($\mathrm{K}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}$) and vein density down hole mirrors increasing intensity of stockwork and sheeted quartz-pyrite veins down hole, characteristics of porphyry Cu-Au mineralisation
\checkmark Second diamond drill hole MCD002 completed to 356m, drilling below mineralised outcrop, core awaiting dispatch to laboratory
\checkmark High-resolution soil geochemical sampling programme commenced at Mongai Creek, to delineate the structural and geological framework prior to further drill targeting
\checkmark Crown Ridge exploration shifting focus to the area most prospective for an epithermal hard-rock source of the abundant coarse and dendritic gold found in the drainage system

Gold Mountain Limited, (ASX: GMN) is pleased to announce the assay results for its maiden diamond drill hole from its Mongai Creek Project in the Enga Province, Papua New Guinea (Figure 1 \& Figure 2).

Results include a 1 m interval of $243 \mathrm{~g} / \mathrm{t} \mathrm{Ag}, 0.8 \% \mathrm{Cu}, 522 \mathrm{ppm} \mathrm{Co}, 0.4 \% \mathrm{Ni}$, and $0.7 \% \mathrm{~W}$ at 38 m depth (Figure 3), representing part of a late-stage hydrothermal system in the Mongai Creek area (Figure 4).

The frequency of base-metal -and Mo-bearing veinlets increases down hole (Figure 1 and Figure 3), as do the $\mathrm{K}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Mo}$ and Pb grades (Figure 3), matching the logging by field geologists of more intense alteration zones further down the hole, and suggesting closer proximity to a mineralising fluid source.

The drill core exhibits extensive stock-worked and sheeted-quartz-pyrite veins, accessory chalcopyrite and covellite, hosted by a porphyritic diorite characteristic of porphyritic Cu-Au mineralisation.

Director of Exploration Doug Smith commented: "For a first drill hole in an exciting new and previously untested area, these results are very encouraging. Complementary to the mineralisation at surface, we're seeing lots of signs down hole of a major porphyry system, which gives us some good vectors to focus our work going forward. We're now going to take a bit of time to get maximum value from our data through good science, and with additional geochemical sampling in the field which we've initiated to better focus and target our next drilling programme."

The mineralisation is hosted in porphyritic diorite overprinted by phyllic (quartz-sericite-pyrite) alteration. The mineralised outcrops are contained within an elliptical rim of $\sim 1.6 \mathrm{~km} x \sim 1.2 \mathrm{~km}$. Drainage sheds from both sides of the narrow elliptical rim where coarse and angular gold have been panned (Figure 1). Inspection of artisanal workings confirmed that gold is shedding from the altered intrusive rocks in the hills flanking the drainage.

Assays from drill hole MCD002 (Figure 5) are expected to be received in 6-10 weeks.

Full results and location information are provided in Table 1 and Appendix 2. More detail on technical procedures is provided in Appendix 1. The true widths of intersections are not known; however, at this stage, veining is expected to be steep. Interception grades were calculated without applying grade capping and without including internal diluting intervals.

Table 1. Details for Diamond drill holes MCD001 \& MCD002

| Hole ID | Easting
 WGS64
 Zone 54S | Northing
 WGS64
 Zone 54S | RL
 (m) | Azimuth
 (mag) deg | Inclination
 (deg) | Final
 Depth |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Target

Figure 1 Results of drilling and geological interpretation at Mongai Creek. Section line shown in Figure 2

Figure 2 Planview map of Mongai Creek, showing recently completed diamond drill holes and surface sampling

Figure 3 Downhole scatter plots for selected elements. In addition to the colours on the key above, open circles represent samples that are most likely weathered to some degree (e.g. Al content); while small circles represent the upper granodiorite unit encountered in the drill hole, medium sized circles a more $\mathbf{C r}$ - and Ni-rich transition unit, while large circles represent the lower granodiorite that has the most K-alteration and veining.

Figure 4 Photo of core box that includes the intercept at $38-39 \mathrm{~m}$, showing a $\sim 10 \mathrm{~cm}$ solid sulphide intercept running close to $\mathbf{1 0 \%} \mathrm{Cu}$ and $0.2 \% \mathrm{Ag}$.

Figure 5 Drill site MCD002 view from the air looking NW.

Soil geochemical sampling on an $80 \times 80 \mathrm{~m}$ grid has commenced at Mongai Creek (Figure 6). Samples will be preliminary tested by pXRF as they are collected, to determine areas of interest and higherdensity infill sampling. All samples will be sent for multi-element, four-acid digest ICP-MS analysis methods. First results are expected to come in 6-10 weeks.

This soil sampling programme will be carried out in tandem with detailed mapping and rock sampling across the entire basin, both programmes aiming to further constrain the geological system and the alteration footprint.

Figure 6 Soil sampling programme at Mongai Creek, currently in progress.

Crown Ridge: Shifting focus to high-grade epithermal hard-rock target

Results for remaining $1 \times 1 \mathrm{~m}$ shallow pit samples were received from the laboratory. The results continue to demonstrate a (paleo-)alluvial deposition process for gold and platinum that concentrates around the main drainage in the catchment, with a colluvial component to it. However, many of the pits on the flanks of the catchment did not reach the main wash (mineralised) horizon, which was only exposed in -and directly adjacent to- the creek, in the 'Pit-200' discovery pit, and in CRP006, and is the one being extensively worked by local gold panners (Figure 7). Full results are shown in Appendix 3.

Figure 7 Gridded and contoured results of Crown Ridge near-surface pitting

This means that the economics of a potential gravity-gold-platinum processing operation that is based on mining near-surface material across the wider catchment basin needs to be carefully considered.

Exploration at Crown Ridge is now focussing on the hard-rock source of the abundant coarse and dendritic gold and platinum found in the drainage system. Such gold is frequently hosted in angular quartz and clearly demonstrates a proximal source of the gold, possibly of high-grade epithermal nature. A detailed soil geochemical sampling grid has been planned and sampling is commencing in the next couple of weeks. Full results for this programme are expected within $8-10$ weeks and are expected to lead to trenching and subsequent shallow drilling targets.

Gold Mountain's Managing Director, Tony Teng, commented: "With the recent discoveries of mineralisation at Mongai Creek and Sak Creek, our focus has clearly shifted away from small-scale near-surface production at Crown Ridge towards the discovery of a large Cu-Au porphyry, or highgrade epithermal hard-rock deposits at these prospects. We will continue to keep our options open with regards to the near-surface potential at Crown Ridge, but we'll prioritise those areas where we're getting the best results and where we can provide the best return for shareholders."

Competent Person's Statement

The information in this report that relates to Exploration Results is based on information compiled by Doug Smith, a Competent Person who is a member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Smith is a consultant geologist who is employed in a full-time capacity by Gold Mountain. Mr Smith has sufficient relevant experience that is relevant to the style of mineralisation and type of deposit under consideration and the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Doug Smith consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

All statements other than statements of historical fact used in this announcement, including, without limitation, statements regarding future plans and objectives of Gold Mountain Limited are forward-looking statements. When used in this announcement, forward-looking statements can be identified by words such as 'may', 'could', 'believes', 'estimates', 'targets', 'expects' or 'intends' and other similar words that involve risks and uncertainties.

These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place. Such forward-looking statements are no guarantee of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the company, its directors and management of Gold Mountain Limited that could cause Gold Mountain Limited's actual results to differ materially from the results expressed or anticipated in these statements.

Gold Mountain Limited cannot and does not give any assurance that the results, performance or achievements expressed or implied by the forward-looking statements contained in this
announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements. Gold Mountain Limited does not undertake to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by applicable law and stock exchange listing requirements.

For further information please see our website www.goldmountainltd.com.au or contact:

Doug Smith
Director Exploration
0419414460

Tony Teng
Managing Director
0414300044

Follow Gold Mountain on Twitter: https://twitter.com/GoldMountainASX

About Gold Mountain

Gold Mountain Limited is an Australian-based minerals exploration and development company which is listed on the Australian Securities Exchange (ASX Code: GMN). Gold Mountain's principal exploration project is in Papua New Guinea, where the Company is exploring and developing several highly promising mineralised zones.

Gold Mountain holds substantial areas within the fertile Au/Cu-endowed Papuan Mobile Belt that includes world-class mines (Figure 8). Most of the areas within the Exploration Licences (ELs) have never been explored using modern technology. Multiple targets have been identified over the licence area of nearly $2,000 \mathrm{~km}^{2}$ (Figure 9). Current exploration focus is on four main prospects:

- Crown Ridge - field programmes have identified part of the catchment area where source of abundant and coarse gold is likely to occur; current exploration working up to hard-rock drilling targets, expected to be of high-grade epithermal nature.
- Mongai Creek, discovery of outcropping mineralisation of possibly large-tonnage porphyry CuAu style; early drilling identified vectors and current field programme focussing on optimising next drilling targets.
- Sak Creek - early-stage exploration identified strongly mineralised float samples from an interpreted potential low-sulphidation epithermal gold system; follow-up field activities being planned.

Large areas remain to be assessed.

Figure 8. Location of the Wabag Project relative to major world class gold mines in Papua New Guinea

Figure 9. GMN exploration licences cover substantial areas within the fertile, Au/Cu-endowed Papuan Mobile Belt that includes world-class mines

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	- Samples and assays reported in this announcement were taken from diamond drilling using a combination of PQ , $H Q, N Q$ and $B Q$ half core - SOPs for all work were used to safeguard representivity of the sampling and drilling, which was carried out using best and standard practice
Drilling techniques	- Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	- Diamond drilling using triple tube $\mathrm{PQ} / \mathrm{HO} / \mathrm{NQ} / \mathrm{BQ}$ equipment
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether	- Recovery measured for each drill run as a ratio of recovered core per run length - Triple tube and sound SOPs improved recovery from core - No relationship exists

Criteria	JORC Code explanation	Commentary
	sample bias may have occurred due to preferential loss/gain of fine/coarse material.	between recovery and grade
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. - The total length and percentage of the relevant intersections logged.	- Drill core logging of lithologies, structures, alteration veining and mineralisation suitable to support MRE. - Logging was both quantitative and qualitative in nature - All core was logged - Petrographic section preparation was performed at Thin Section Australia Pty Ltd in Brisbane, Queensland. Standard thin section (TS) and polished thin sections (PTS) were prepared. Subsequently, the TS was examined microscopically in transmitted and oblique reflected light, and PTS in transmitted and reflected light, and photomicrographs were taken of representative textural and mineralogical characteristics.
Subsampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to	- Drillhole sampling was carried out by splitting core in half using a diamond core saw. - Care was taken with rubbly intervals to maintain representivity - PQ Core was sampled in 2 metre length intervals; HQ and $N Q$ core were sampled in 1 metre length intervals - Preparation following cutting used standard practices of crushing, pulverising and splitting at the laboratory, controlled via SOPs to safeguard

Criteria	JORC Code explanation	Commentary
	the grain size of the material being sampled.	representivity
Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	- Drill core was analysed by ALS. Gold by fire assay; multielement chemistry by method ME-MS41 - The nature, quality of assaying technique are considered appropriate by the competent person. - Accuracy and precision of the laboratory analytical process were controlled via external and internal certified reference materials, duplicates and replicates.
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- Intervals have not been verified by check sampling - Data have not been adjusted - No twin holes were drilled.
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- Drillhole collar positions were determined by handheld GPS readings (accuracy +/-5m) and recorded in WGS84, Zone 54 S datum. This is considered appropriate for this stage of exploration by the competent person. Good topographic control is available.
Data spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	- Data spacing is not relevant for this stage of exploration. It is not sufficient for Resource Estimation purposes.
Orientation	- Whether the orientation of sampling	- The orientation of samples

Criteria	JORC Code explanation	Commentary
of data in relation to geological structure	achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	is not likely to bias the assay results, and is not relevant given the scouting nature of the hole
Sample security	- The measures taken to ensure sample security.	- Samples are stored in a locked shed at the Crown ridge camp. Batches of samples will be transported by company personnel to Mount Hagen and despatched by courier to the analytical Laboratory. - Sample security was ensured through Chain of Custody SOPs and managed by senior GMN personnel on site.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- No audits or reviews have been carried out.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	EL2306 was granted to Khor Eng Hock \& Sons (PNG) Limited (KEH) on 14 December 2015. Gold Mountain Limited (ASX:GMN) is the manager of the exploration programs under an agreement with KEH. The tenement covers 96 sub-blocks (328 km 2) in Enga Province in the Highlands Region of Papua New Guinea. Application for renewal of 48 subblocks (164 km2) was submitted to MRA on 25 August 2017.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	All exploration programs conducted by Gold Mountain Limited
Geology	- Deposit type, geological setting and style of mineralisation.	Mineralisation style at Mongai is interpreted to be of porphyry Cu-Au and/or epithermal nature.
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Drilling by QED using an Atlas Copco trackmounted CS14 Drill Rig running triple tube PQ / HQ drill rods. Collar co-ordinates, inclination, azimuth and depth presented in this announcement.
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be	Interception grades are stated without applying grade capping and without including internal diluting intervals. No material information is excluded.

Criteria	JORC Code explanation	Commentary
	shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths		The relationship between mineralisation widths and intercept lengths is unknown at this stage but considered less relevant given the nature of the results.
Diagrams	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Maps showing the location of the Mongai Creek prospect within the Wabag suite of tenements and the locations of the drill holes (completed and proposed) and the location of rock chip samples at Mongai Creek are presented in this announcement
Balanced reporting	- Acknowledgment and appraisal of exploration by other parties.	In the Competent Person's view the results in this announcements are reported in a balanced manner.
Other substantive exploration data	- Deposit type, geological setting and style of mineralisation.	Previous geological fieldwork comprising geological mapping of rocks types, alteration and structures identified a potential porphyry copper-gold system
Further work	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the	Geochemical sampling and geological mapping to detect other areas of potential gold mineralisation and location of further drill holes.

Criteria	JORC Code explanation	Commentary
	hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	

GOLD MOUNTAIN LIMITED

ASX:GMN
(ABN 79115845942)
Suite 2501 Level 25 St Martins Tower
31 Market Street Sydney NSW 2000 Australia
(PO Box Q638 QVB Market Street NSW 1230 Australia)
Tel: +61 (02) 92833880

Appendix 1. Full assay results for MCD001

hole_id	samp_id	depth_from	depth_to	interval	Cu_ppm	Mo_ppm	Pb_ppm	Zn_ppm	Au_ppm	Ag_ppm	Ni_ppm	W_ppm
MCD001	44047	0	1	1	386	8	6	57	0.02	0.5	3	<10
MCD001	44048	1	2	1	296	5	2	50	0.012	<0.5	9	<10
MCD001	44049	2	3	1	233	2	3	63	0.009	<0.5	3	<10
MCD001	44050	3	4	1	150	3	<2	102	0.005	<0.5	1	<10
MCD001	44051	4	5	1	195	4	8	189	0.012	<0.5	6	<10
MCD001	44052	5	6	1	259	1	7	153	0.009	<0.5	4	<10
MCD001	44053	6	7	1	223	2	<2	147	0.014	<0.5	6	<10
MCD001	44054	7	8	1	217	1	2	125	0.016	<0.5	<1	<10
MCD001	44055	8	9	1	389	7	<2	96	0.015	<0.5	3	<10
MCD001	44056	9	10	1	260	2	3	89	0.01	<0.5	2	<10
MCD001	44057	10	11	1	281	3	9	113	0.011	<0.5	9	<10
MCD001	44058	11	12	1	193	1	6	167	<0.005	<0.5	4	<10
MCD001	44059	12	13	1	170	2	7	182	0.009	<0.5	<1	<10
MCD001	44060	13	14	1	340	4	7	109	0.014	<0.5	6	<10
MCD001	44061	14	15	1	717	5	<2	129	0.031	0.7	8	<10
MCD001	44062	15	16	1	471	7	5	130	0.005	<0.5	2	<10
MCD001	44063	16	17	1	224	2	<2	139	0.008	<0.5	2	<10
MCD001	44064	17	18	1	283	4	7	176	0.009	<0.5	1	<10
MCD001	44065	18	19	1	336	7	<2	129	0.007	0.7	2	<10
MCD001	44066	19	20	1	593	5	7	134	0.013	<0.5	6	<10
MCD001	44067	20	21	1	383	4	2	97	0.008	<0.5	5	<10
MCD001	44068	21	22	1	298	4	<2	63	0.018	<0.5	2	<10
MCD001	44069	22	23	1	594	7	2	74	0.017	<0.5	4	10

MCD001	44070	23	24	1	413	2	<2	89	0.014	<0.5	5	<10
MCD001	44071	24	25	1	364	2	6	85	0.014	<0.5	5	<10
MCD001	44072	25	26	1	452	3	4	78	0.01	<0.5	4	10
MCD001	44073	26	27	1	449	4	7	60	0.01	<0.5	5	10
MCD001	44074	27	28	1	427	5	5	56	0.009	0.5	4	10
MCD001	44075	28	29	1	396	10	2	55	0.009	<0.5	5	10
MCD001	44076	29	30	1	469	6	<2	55	0.012	<0.5	6	<10
MCD001	44077	30	31	1	426	5	10	44	0.01	<0.5	3	<10
MCD001	44078	31	32	1	281	10	2	19	0.022	<0.5	2	<10
MCD001	44079	32	33	1	270	4	6	25	0.014	<0.5	3	10
MCD001	44080	33	34	1	227	4	5	141	<0.005	<0.5	2	<10
MCD001	44081	34	35	1	238	5	<2	43	0.008	0.6	4	<10
MCD001	44082	35	36	1	248	14	<2	40	0.006	0.5	4	<10
MCD001	44083	36	37	1	417	11	2	46	0.014	0.7	3	10
MCD001	44084	37	38	1	149	10	<2	54	<0.005	<0.5	2	<10
MCD001	44085	38	39	1	8040	5	3	422	0.021	243	4070	6820
MCD001	44086	39	40	1	456	6	2	63	0.01	4.2	62	300
MCD001	44087	40	41	1	301	10	<2	42	0.006	<0.5	2	<10
MCD001	44088	41	42	1	1020	5	4	49	0.058	0.5	3	<10
MCD001	44089	42	43	1	269	14	4	40	0.007	<0.5	2	<10
MCD001	44090	43	44	1	189	2	4	42	<0.005	1.3	21	110
MCD001	44091	44	45	1	176	1	5	40	<0.005	0.5	2	<10
MCD001	44092	45	46	1	114	4	<2	42	<0.005	<0.5	<1	<10
MCD001	44093	46	47	1	156	2	2	40	<0.005	<0.5	<1	<10
MCD001	44094	47	48	1	302	6	<2	38	0.009	<0.5	4	<10
MCD001	44095	48	49	1	296	41	4	39	<0.005	<0.5	4	10
MCD001	44096	49	50	1	443	16	<2	32	0.009	0.6	5	<10

MCD001	44097	50	51	1	290	18	7	34	0.007	<0.5	2	10
MCD001	44098	51	52	1	203	6	<2	35	<0.005	<0.5	2	10
MCD001	44099	52	53	1	265	6	2	38	<0.005	<0.5	1	<10
MCD001	44100	53	54	1	135	4	<2	36	<0.005	<0.5	1	<10
MCD001	44101	54	55	1	133	4	2	35	<0.005	1.1	1	<10
MCD001	44102	55	56	1	151	3	<2	38	<0.005	<0.5	3	<10
MCD001	44103	56	57	1	299	79	<2	40	0.005	<0.5	<1	<10
MCD001	44104	57	58	1	163	4	<2	46	<0.005	<0.5	<1	<10
MCD001	44105	58	59	1	159	2	<2	42	<0.005	<0.5	2	<10
MCD001	44106	59	60	1	105	5	2	39	<0.005	<0.5	<1	<10
MCD001	44107	60	61	1	123	3	2	34	<0.005	<0.5	2	<10
MCD001	44108	61	62	1	157	10	<2	34	<0.005	<0.5	<1	<10
MCD001	44109	62	63	1	204	5	<2	35	<0.005	<0.5	<1	<10
MCD001	44110	63	64	1	184	2	<2	34	<0.005	<0.5	<1	<10
MCD001	44111	64	65	1	231	4	4	29	<0.005	<0.5	2	<10
MCD001	44112	65	66	1	180	5	2	29	<0.005	<0.5	3	<10
MCD001	44113	66	67	1	136	2	3	36	0.006	2	2	<10
MCD001	44114	67	68	1	262	9	<2	37	0.008	0.5	2	<10
MCD001	44115	68	69	1	157	3	2	40	<0.005	<0.5	1	<10
MCD001	44116	69	70	1	213	2	<2	30	<0.005	<0.5	1	<10
MCD001	44117	70	71	1	191	5	3	21	0.011	<0.5	4	10
MCD001	44118	71	72	1	81	5	<2	22	<0.005	<0.5	4	10
MCD001	44119	72	73	1	205	3	<2	31	0.007	<0.5	1	10
MCD001	44120	73	74	1	136	1	<2	30	<0.005	<0.5	<1	<10
MCD001	44121	74	75	1	267	30	4	32	0.006	<0.5	2	<10
MCD001	44122	75	76	1	255	5	<2	23	0.011	<0.5	1	10
MCD001	44123	76	77	1	87	15	<2	15	<0.005	<0.5	1	10

MCD001	44124	77	78	1	182	19	3	22	<0.005	<0.5	2	10
MCD001	44125	78	79	1	113	5	<2	26	<0.005	<0.5	<1	<10
MCD001	44126	79	80	1	227	9	<2	30	<0.005	<0.5	<1	<10
MCD001	44127	80	81	1	289	9	<2	32	<0.005	<0.5	2	<10
MCD001	44128	81	82	1	211	2	2	31	<0.005	<0.5	1	<10
MCD001	44129	82	83	1	139	3	4	28	<0.005	<0.5	<1	<10
MCD001	44130	83	84	1	172	<1	<2	24	<0.005	0.5	1	<10
MCD001	44131	84	85	1	210	7	3	29	<0.005	<0.5	3	<10
MCD001	44132	85	86	1	122	5	<2	25	<0.005	<0.5	2	<10
MCD001	44133	86	87	1	107	2	3	29	<0.005	<0.5	2	<10
MCD001	44134	87	88	1	139	7	<2	30	<0.005	<0.5	<1	<10
MCD001	44135	88	89	1	343	6	7	32	0.008	<0.5	1	<10
MCD001	44136	89	90	1	372	8	2	33	0.01	<0.5	1	<10
MCD001	44137	90	91	1	127	<1	<2	27	<0.005	<0.5	<1	<10
MCD001	44138	91	92	1	112	4	<2	25	<0.005	<0.5	<1	<10
MCD001	44139	92	93	1	182	2	<2	34	<0.005	<0.5	1	<10
MCD001	44140	93	94	1	201	<1	3	33	<0.005	<0.5	<1	<10
MCD001	44141	94	95	1	249	1	3	34	<0.005	<0.5	<1	<10
MCD001	44142	95	96	1	353	60	3	29	0.005	<0.5	<1	<10
MCD001	44143	96	97	1	316	10	<2	29	0.01	<0.5	1	10
MCD001	44144	97	98	1	156	4	7	29	<0.005	<0.5	1	<10
MCD001	44145	98	99	1	238	2	3	27	0.013	<0.5	1	10
MCD001	44146	99	100	1	174	8	<2	30	0.011	<0.5	<1	<10
MCD001	44147	100	101	1	256	4	<2	27	0.03	<0.5	<1	<10
MCD001	44148	101	102	1	308	11	3	29	0.012	<0.5	2	10
MCD001	44149	102	103	1	222	3	2	42	0.008	<0.5	<1	<10
MCD001	44150	103	104	1	407	2	<2	33	0.012	<0.5	1	<10

MCD001	44151	104	106	2	242	15	13	60	<0.005	<0.5	1	<10
MCD001	44152	106	108	2	135	4	3	45	<0.005	<0.5	3	<10
MCD001	44153	108	110	2	181	1	7	42	<0.005	<0.5	2	<10
MCD001	44154	110	112	2	203	9	8	40	0.007	<0.5	3	<10
MCD001	44155	112	114	2	329	7	4	36	0.008	<0.5	1	<10
MCD001	44156	114	116	2	478	9	<2	35	0.008	<0.5	2	<10
MCD001	44157	116	118	2	249	19	7	34	<0.005	<0.5	3	<10
MCD001	44158	118	120	2	167	8	4	39	<0.005	<0.5	2	<10
MCD001	44159	120	122	2	286	17	4	42	0.008	<0.5	<1	<10
MCD001	44160	122	124	2	438	6	8	64	0.011	<0.5	65	<10
MCD001	44161	124	126	2	322	21	2	36	<0.005	<0.5	2	<10
MCD001	44162	126	128	2	247	6	7	53	0.018	0.6	1	<10
MCD001	44163	128	130	2	180	3	6	60	0.007	<0.5	2	<10
MCD001	44164	130	132	2	149	7	2	34	<0.005	<0.5	2	<10
MCD001	44165	132	134	2	234	15	2	37	<0.005	<0.5	3	<10
MCD001	44166	134	136	2	402	13	9	29	0.006	<0.5	<1	<10
MCD001	44167	136	138	2	379	8	4	36	0.005	<0.5	1	<10
MCD001	44168	138	140	2	498	45	3	30	0.01	<0.5	<1	10
MCD001	44169	140	142	2	247	12	<2	34	<0.005	<0.5	1	<10
MCD001	44170	142	144	2	129	9	2	41	<0.005	<0.5	<1	<10
MCD001	44171	144	146	2	217	22	3	61	<0.005	<0.5	1	<10
MCD001	44172	146	148	2	262	14	<2	56	0.008	0.8	4	<10
MCD001	44173	148	150	2	219	13	2	39	0.005	<0.5	3	<10
MCD001	44174	150	152	2	392	9	2	48	0.051	<0.5	<1	<10
MCD001	44175	152	154	2	198	4	<2	39	0.005	<0.5	2	<10
MCD001	44176	154	156	2	220	6	4	42	<0.005	<0.5	1	<10
MCD001	44177	156	158	2	208	2	<2	44	<0.005	<0.5	1	<10

MCD001	44178	158	160	2	425	7	<2	41	0.005	<0.5	5	<10
MCD001	44179	160	162	2	370	6	3	36	<0.005	<0.5	<1	<10
MCD001	44180	162	164	2	358	8	<2	35	<0.005	<0.5	4	<10
MCD001	44181	164	166	2	431	10	5	24	0.005	<0.5	<1	<10
MCD001	44182	166	168	2	438	7	<2	30	0.007	<0.5	3	<10
MCD001	44183	168	170	2	393	10	3	25	<0.005	<0.5	<1	<10
MCD001	44184	170	172	2	722	41	3	20	0.007	<0.5	<1	<10
MCD001	44185	172	174	2	293	26	6	31	<0.005	<0.5	2	<10
MCD001	44186	174	176	2	272	26	4	22	<0.005	<0.5	2	<10
MCD001	44187	176	178	2	178	4	2	28	<0.005	<0.5	<1	<10
MCD001	44188	178	180	2	168	5	<2	30	<0.005	<0.5	<1	<10
MCD001	44189	180	182	2	181	3	3	28	<0.005	<0.5	<1	<10
MCD001	44190	182	184	2	407	9	3	20	<0.005	<0.5	<1	<10
MCD001	44191	184	186	2	178	12	<2	26	<0.005	<0.5	2	<10
MCD001	44192	186	188	2	279	13	<2	20	<0.005	<0.5	3	<10
MCD001	44193	188	190	2	217	6	3	22	<0.005	<0.5	1	<10
MCD001	44194	190	192	2	215	9	<2	30	<0.005	<0.5	<1	<10
MCD001	44195	192	194	2	228	14	4	25	<0.005	<0.5	2	<10
MCD001	44196	194	196	2	298	16	6	31	<0.005	<0.5	2	10
MCD001	44197	196	198	2	178	10	6	38	<0.005	<0.5	2	<10
MCD001	44198	198	200	2	252	9	6	33	0.012	<0.5	2	<10
MCD001	44199	200	202	2	199	8	8	34	0.007	<0.5	3	<10
MCD001	44200	202	204	2	209	8	4	37	0.01	<0.5	3	<10
MCD001	44201	204	206	2	168	6	6	34	0.006	<0.5	1	<10
MCD001	44202	206	208	2	289	51	4	27	0.005	<0.5	4	<10
MCD001	44203	208	210	2	276	9	3	33	0.005	<0.5	2	<10
MCD001	44204	210	212	2	322	14	3	48	0.009	<0.5	<1	<10

MCD001	44205	212	214	2	461	23	5	40	<0.005	<0.5	2	<10
MCD001	44206	214	216	2	365	25	8	40	0.006	<0.5	1	10
MCD001	44207	216	218	2	407	35	2	30	0.008	0.5	10	<10
MCD001	44208	218	220	2	223	9	<2	26	<0.005	<0.5	<1	<10
MCD001	44209	220	222	2	189	2	<2	47	<0.005	<0.5	<1	<10
MCD001	44210	222	224	2	216	8	9	61	<0.005	<0.5	4	<10
MCD001	44211	224	226	2	358	31	13	83	0.005	<0.5	7	<10
MCD001	44212	226	228	2	245	11	43	130	<0.005	<0.5	1	<10
MCD001	44213	228	230	2	69	2	74	221	0.005	<0.5	<1	<10
MCD001	44214	230	232	2	88	21	3	44	<0.005	<0.5	3	<10
MCD001	44215	232	234	2	219	14	2	30	0.005	<0.5	2	<10
MCD001	44216	234	236	2	295	10	<2	39	0.006	<0.5	<1	<10
MCD001	44217	236	238	2	217	3	<2	44	<0.005	<0.5	<1	<10
MCD001	44218	238	240	2	495	11	<2	49	0.006	<0.5	<1	<10
MCD001	44219	240	242	2	274	4	<2	45	0.005	<0.5	<1	<10
MCD001	44220	242	244	2	311	22	2	35	<0.005	<0.5	1	<10
MCD001	44221	244	246	2	428	14	<2	37	<0.005	<0.5	2	<10
MCD001	44222	246	248	2	402	31	3	31	0.005	<0.5	4	<10
MCD001	44223	248	250	2	799	46	6	31	0.009	<0.5	<1	<10
MCD001	44224	250	252	2	378	19	6	31	<0.005	<0.5	2	<10
MCD001	44225	252	254	2	420	21	2	32	<0.005	0.8	1	<10
MCD001	44226	254	256	2	170	7	<2	48	<0.005	<0.5	<1	<10
MCD001	44227	256	258	2	149	4	<2	43	<0.005	<0.5	<1	<10
MCD001	44228	258	260	2	177	9	5	46	<0.005	<0.5	<1	<10
MCD001	44229	260	262	2	328	62	6	34	<0.005	<0.5	<1	<10
MCD001	44230	262	264	2	316	69	<2	44	<0.005	<0.5	<1	<10
MCD001	44231	264	266	2	319	27	4	35	<0.005	<0.5	<1	<10

MCD001	44232	266	268	2	490	39	3	36	<0.005	<0.5	<1	10
MCD001	44233	268	270	2	547	15	9	45	<0.005	<0.5	<1	<10
MCD001	44234	270	272	2	299	17	3	40	<0.005	<0.5	<1	<10
MCD001	44235	272	274	2	1680	54	4	56	0.008	1.3	2	<10
MCD001	44236	274	276	2	594	5	4	203	<0.005	<0.5	<1	<10
MCD001	44237	276	278	2	102	1	<2	131	<0.005	<0.5	<1	<10
MCD001	44238	278	280	2	106	2	6	93	<0.005	<0.5	2	<10
MCD001	44239	280	282	2	187	1	2	88	<0.005	<0.5	<1	<10
MCD001	44240	282	284	2	70	<1	5	93	<0.005	<0.5	<1	<10
MCD001	44241	284	286	2	148	3	<2	64	<0.005	<0.5	<1	<10
MCD001	44242	286	288	2	159	43	<2	67	<0.005	<0.5	<1	<10
MCD001	44243	288	290	2	207	8	6	79	<0.005	<0.5	<1	10
MCD001	44244	290	292	2	143	54	4	64	<0.005	<0.5	<1	<10
MCD001	44245	292	294	2	231	47	3	61	<0.005	<0.5	<1	<10
MCD001	44246	294	296	2	229	46	<2	47	<0.005	<0.5	<1	<10
MCD001	44247	296	298	2	237	50	5	55	<0.005	<0.5	4	<10
MCD001	44248	298	300	2	423	79	4	119	<0.005	0.6	<1	<10
MCD001	44249	300	302	2	96	1	2	1240	<0.005	<0.5	<1	<10
MCD001	44250	302	304	2	33	2	6	378	<0.005	<0.5	<1	<10
MCD001	44251	304	306	2	33	1	3	217	<0.005	<0.5	<1	<10
MCD001	44252	306	308	2	8	4	6	103	<0.005	<0.5	<1	<10
MCD001	44253	308	310	2	198	4	8	71	<0.005	<0.5	2	<10
MCD001	44254	310	312	2	327	7	6	75	<0.005	0.6	39	10
MCD001	44255	312	314	2	408	25	<2	80	<0.005	<0.5	89	<10
MCD001	44256	314	316	2	245	4	6	34	<0.005	<0.5	3	<10
MCD001	44257	316	318	2	480	199	36	66	<0.005	0.7	3	<10
MCD001	44258	318	320	2	275	12	7	51	<0.005	<0.5	2	<10

ASX:GMN

MCD001	44259	320	322	2	381	2	3	47	0.006	<0.5	4	<10
MCD001	44260	322	324	2	353	33	5	39	0.02	<0.5	3	<10
MCD001	44261	324	326	2	293	9	11	74	<0.005	<0.5	54	<10
MCD001	44262	326	328	2	352	8	16	58	<0.005	<0.5	31	<10
MCD001	44263	328	330	2	382	11	6	34	0.013	<0.5	3	<10
MCD001	44264	330	332	2	1410	65	5	39	0.023	0.6	1	10
MCD001	44265	332	334	2	460	68	3	92	<0.005	<0.5	96	<10
MCD001	44266	334	336	2	704	27	5	51	0.009	<0.5	<1	<10
MCD001	44267	336	338	2	321	5	<2	52	<0.005	<0.5	2	<10
MCD001	44268	338	340	2	430	12	2	44	0.005	<0.5	<1	<10
MCD001	44269	340	342	2	260	3	5	44	<0.005	<0.5	2	<10
MCD001	44270	342	344	2	191	11	7	37	<0.005	<0.5	1	<10
MCD001	44271	344	346	2	235	30	4	40	<0.005	<0.5	<1	<10
MCD001	44272	346	348	2	331	6	2	51	<0.005	0.5	2	<10
MCD001	44273	348	350	2	218	3	<2	42	<0.005	<0.5	<1	<10
MCD001	44274	350	352	2	759	21	<2	50	0.005	<0.5	4	<10
MCD001	44275	352	354	2	261	11	7	43	<0.005	<0.5	<1	<10
MCD001	44276	354	356	2	195	2	<2	32	<0.005	<0.5	<1	<10
MCD001	44277	356	358	2	191	5	<2	32	<0.005	<0.5	1	<10
MCD001	44278	358	360	2	189	2	2	50	<0.005	<0.5	1	<10
MCD001	44279	360	362	2	275	20	3	41	<0.005	<0.5	<1	<10
MCD001	44280	362	364	2	226	6	<2	44	<0.005	<0.5	<1	<10
MCD001	44281	364	366	2	232	11	<2	43	<0.005	<0.5	<1	<10
MCD001	44282	366	368	2	299	57	7	54	<0.005	<0.5	<1	<10
MCD001	44283	368	370	2	374	19	<2	54	<0.005	<0.5	<1	<10
MCD001	44284	370	372	2	465	19	6	52	<0.005	<0.5	<1	<10
MCD001	44285	372	374	2	896	54	9	73	<0.005	<0.5	3	10

MCD001	44286	374	376	2	414	10	5	40	<0.005	<0.5	<1	<10
MCD001	44287	376	378	2	387	25	8	55	<0.005	<0.5	<1	<10
MCD001	44288	378	380	2	1010	12	11	83	0.019	0.8	2	<10
MCD001	44289	380	382	2	601	27	<2	74	<0.005	<0.5	<1	<10
MCD001	44290	382	384	2	629	8	7	58	0.006	<0.5	2	<10
MCD001	44291	384	386	2	418	3	5	56	<0.005	<0.5	1	<10
MCD001	44292	386	388	2	549	34	3	37	<0.005	<0.5	4	10
MCD001	44293	388	390	2	345	3	6	57	<0.005	<0.5	<1	<10
MCD001	44294	390	392	2	315	18	3	42	<0.005	<0.5	1	<10
MCD001	44295	392	394	2	395	16	3	41	<0.005	<0.5	<1	<10
MCD001	44296	394	396	2	322	13	<2	43	<0.005	<0.5	1	<10
MCD001	44297	396	398	2	537	8	3	38	0.007	<0.5	<1	<10
MCD001	44298	398	400	2	1060	134	18	103	0.048	0.8	2	10
MCD001	44299	400	402	2	765	21	7	90	0.013	<0.5	1	10
MCD001	44300	402	404	2	405	8	4	94	0.006	<0.5	1	<10
MCD001	44301	404	406	2	600	15	4	58	0.008	<0.5	2	<10
MCD001	44302	406	408	2	733	8	2	86	0.007	<0.5	43	<10
MCD001	44303	408	410	2	451	38	6	66	0.005	<0.5	<1	<10
MCD001	44304	410	412	2	657	44	5	54	0.01	<0.5	2	<10
MCD001	44305	412	414	2	482	38	9	52	0.009	<0.5	<1	<10
MCD001	44306	414	416	2	510	14	3	55	0.009	<0.5	2	<10
MCD001	44307	416	418	2	870	26	8	46	0.014	<0.5	3	<10
MCD001	44308	418	420	2	650	7	5	64	0.008	<0.5	<1	<10
MCD001	44309	420	422	2	720	3	6	55	0.008	<0.5	2	<10
MCD001	44310	422	424	2	146	2	2	62	<0.005	<0.5	2	<10
MCD001	44311	424	426	2	123	2	3	58	<0.005	<0.5	<1	<10
MCD001	44312	426	428	2	400	11	3	52	0.006	<0.5	<1	<10

ASX:GMN

MCD001	44313	428	430	2	220	30	5	58	0.005	0.6	<1	<10
MCD001	44314	430	432	2	434	4	<2	46	0.009	<0.5	<1	<10
MCD001	44315	432	434	2	334	5	<2	58	0.005	<0.5	1	<10
MCD001	44316	434	436	2	378	9	<2	58	0.005	<0.5	2	<10
MCD001	44317	436	438	2	191	11	3	56	0.006	<0.5	<1	<10
MCD001	44318	438	440	2	212	14	<2	51	0.008	<0.5	<1	<10
MCD001	44319	440	442	2	421	10	<2	61	0.005	<0.5	<1	<10
MCD001	44320	442	444	2	665	29	4	51	0.009	<0.5	<1	<10
MCD001	44321	444	446	2	472	15	6	50	0.01	<0.5	<1	<10
MCD001	44322	446	448	2	737	22	5	61	0.009	<0.5	1	<10
MCD001	44323	448	450	2	363	9	5	55	0.008	<0.5	1	<10
MCD001	44324	450	452	2	273	6	<2	51	0.009	<0.5	<1	<10
MCD001	44325	452	454	2	311	18	2	48	0.006	<0.5	1	<10
MCD001	44326	454	456	2	261	9	<2	44	<0.005	<0.5	<1	<10
MCD001	44327	456	458	2	292	71	4	45	<0.005	<0.5	<1	<10
MCD001	44328	458	460	2	385	10	22	67	0.01	<0.5	<1	10
MCD001	44329	460	462	2	413	2	55	103	0.011	<0.5	2	<10
MCD001	44330	462	464	2	537	9	<2	50	0.01	<0.5	<1	<10
MCD001	44331	464	466	2	403	14	71	90	0.008	0.5	2	10
MCD001	44332	466	468	2	237	213	11	19	0.016	0.6	1	10
MCD001	44333	468	470	2	907	14	<2	33	0.017	<0.5	5	10
MCD001	44334	470	472	2	518	22	4	44	0.009	0.5	<1	10
MCD001	44335	472	474	2	1050	68	8	74	0.009	1.1	3	10
MCD001	44336	474	476	2	589	55	4	81	0.007	<0.5	3	<10
MCD001	44337	476	478	2	484	47	14	65	0.009	0.5	<1	<10
MCD001	44338	478	480	2	337	23	4	50	<0.005	<0.5	1	10
MCD001	44339	480	482	2	531	31	4	69	0.005	<0.5	<1	<10

ASX:GMN

Appendix 3 Results of Crown Ridge pit sampling to date

pit_id	East	North	RL	Date_started	Completed	depth	no of samples	CumAu mg/m3 (CN)	comment
CRP001	816432	9407067	2296	20171011	20171014	5	10	196	
CRP002	816167	9407137	2328	20171010	20171017	4.85	9	68	
CRP003	815880	9407336	2329	20171017	20171023	4.8	10	24	
CRP004	815875	9407344	2327	20171019	20171023	5	9	49	
CRP005	816129	9407393	2273	20171024	20171030	4.15	8	103	
CRP006	816665	9407405	2253	20171027	20171113	5.4	9	1515	
CRP007	816382	9407445	2276	20171102	20171106	4.4	9	59	
CRP008	816672	9407634	2315	20171107	20171113	5.22	9	112	
CRP009	816304	9407592	2303	20171117	20171125	4.85	9	159	
CRP010	816458	9407612	2292	20171126	20171202	4.1	7	116	
CRP011	816402	9407258	2280	20171220	20171230	4.65	9		not assayed
CRP012	815889	9407696	2312	20180104	20180112	5	9		not assayed
CRP013	816092	9407638	2282	20180117	20180123	5	9	47	
CRP014	815944	9407487	2291	20180124	20180130	4.7	9	112	
CRP015	816798	9407550	2269	20180131	20180203	5	9	129	
CRP016	816892	9407353	2285	20180204	20180207	5.3	9	122	
CRP017	816993	9407563	2263	20180207	20180212	4.9	8	71	
CRP018	817212	9407344	2278	20180215	20180216	5	9	86	
CRP019	816761	9407210	2288	20180223	20180226	5.1	9	21	
CRP020	816588	9407347	2267	20180226	20180228	4.5	8	76	
CRP021	816565	9407438	2288	20180301	20180304	4.9	9	264	
CRP022	816699	9407475	2297	20180305	20180307	5	9	162	
CRP023	816765	9407418	2263	20180307	20180309	5.1	9	49	

CRP024	816504	9407402	2267	20180310	20180312	4.8	8	48	
CRP025	816488	9407493	2292	20180313	20180315	4.9	9	159	
CRP026	816724	9407337	2287	20180316	20180318	4.5	8	96	
CRP027	816646	9407301	2251	20180319	20180319	2.4	3	25	
CRP028	816642	9407305	2268	20180320	20180322	4.4	8	156	
CRP029	816772	9407299	2302	20180323	20180325	5	9	63	
CRP030	816663	9407215	2289	20180325	20180328	5.3	10	47	
CRP031	816678	9407149	2290	20180329	20180401	4	7	212	
CRP032	816858	9407411	2250	20180402	20180404	5	9	376	
CRP033	816595	9407214	2294	20180404	20180406	5	9	31	last 4 samples not yet submitted
CRP034	816568	9407296	2281	20180406	20180408				not yet submitted
CRP035	816952	9407399	2287	20180408	20180411				not yet submitted
CRP036	816864	9407506	2273	20180412	20180922				not yet submitted

